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Abstract—A method for constructing dispersive. nonlinear mixture models for unidirectionally
fiber-reinforced composites is described. System nonlinearities in the treated example result from
nonlinear material properties of the constituents. The proposed model is a nonlinear generalization
of the linear model developed by Murakami and Hegemier [Journal of Applied Mechunics, Vol. 53,
pp. 765773 (1986)] for elastic constituents, Model construction is based upon a2 homogenization
technique which employs multivariable asymptotic expansions in conjunction with certain weighted
residual procedures. The methodology furnishes the equations of motion, the appropriate initial
and boundary conditions. and a set of consistent rate constitutive relations. Model validation for
linear and nonlinear dynamic responses is accomplished by comparing predicted results for wave-
guide and wave-reflect problems with available experimental data or data obtained by use of a
detailed finite clement (FE) analysis. The validation studies reveal that the derived continuum modct
provides good simulations of comiplex wave phenomena and furnishes an cconomical alternative to
detailed. explicit FE models. The studies performed reveal the importance of wave dispersion and
attenuation phenomena in nonlincar as well as linear wave propagation in the composits.

INTRODUCTION

Composites are “designer” materials in the sense that a designer has the freedom to prescribe
the material microstructure such that global response measures of interest are optimized
for a given load environment together with eertain cost/weight constraints, Such designer
freedom, however, creates a need for material response models which are synthesized
directly from material and geometrical information at the microstructural level. This need,
in turn, stems from a desire to avoid a myriad of experiments which may be necessary to
evaluate the material parameters associated with phenomenological models.

A situation of special interest to material designers concerns fiber-reinforced polymer
and metal-matrix composites subject to dynamic load environments. Within the context of
such materials and environments, response measures of stress wave attenuation and/or
dispersion are often sought. For such problem types, one of the earliest successful attempts
to synthesize a global response theory from microstructural information is due to
Achenbach and Herrmann (1968) who formulated a higher-order continuum model, known
as the “effective stiffness theory™, to simulate elastic wiave motion. Subsequent extensions
and applications of this work were conducted by Bartholomew and Torvick (1972),
Hlavacek (1975). Achenbach (1975, 1976), and Aboudi (1981). By modifying the original
methodology Aboudi (1982, 1985) extended the lincar model to account for viscoplastic
material response. In parallel to the effective stiffness theories, attempts were made to
develop mixture {multi-phase) continuum theories with microstructure. A representative
cross-scction of this subject includes the works by Martin ¢t al. (1971), Chot and Bedford
(1973), Hegemier e al. (1973), Hegemicr and Gurtman (1974), Nayfeh (1977), Murakami
et al. (1979), Nayfeh et a/. (1984), and Murakami and Hegemier (1986).

To-date. the foregoing mixture theories have not been extended to model nonlinear
material responses for arbitrary wave motion. In view of the potential modeling capability
of the mixture descriptions, and in response to a perceived need. a procedure is illustrated
in this paper for the mathematical construction of a higher-order mixture description of
nonlinear wave propgation in unidirectional fiber-reinforced composites. The resulting
model incorporates wave dispersion, wave attenuation, localized plastic flow, and effective
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anisotropy. For clarity of presentation. the example construction treated herein is applied
to a hexagonal array of fiber-reinforcement and rate-independent elastoplastic material
nonlinearities. While the model construction procedure is applicable to arbitrary fiber
layout, rate-dependent material response, and interfacial slip, extension and investigation
of such cases are deferred to later publications.

The model construction method treated is based upon a multiscale homogenization
technique developed by Hegemier and Gurtman (1974) for waveguide propagation and by
Murakami and Hegemier (1986) for arbitrary linear wave motion. The methodology yields
the equations of motion. the appropriate initial and boundary conditions, and a set of
consistent rate constitutive relations. The derived continuum mixture theory is non-
phenomenological in the sense that the model is synthesized from the composite “micro-
structure” which consists of the fiber material and geometrical properties. the interface
properties, and the matrix properties.

A considerable effort is made to validate the resulting model subsequent to its
derivation. For this purpose, a numerical experiment is employed as the “exact™ basis for
comparison. Here numerical predictions from the continuum description are compared
with detailed finite element (FE) results for several key time-dependent boundary value
problems. This task necessitated the development of a special FE code for the model. The
FE code DYNA2D (Hallquist, 1982) was employed to generate the “exact” reference data ;
for this purpose a fine mesh was used to explicitly model the composite microstructure.

In addition to information concerning accuracy, the validation calculations reveal
some interesting features regarding response characteristics associated with wave dispersion,
wave attenuation, localized plastic flow and effective anisotropy. These calculations also
furnish cnlightening information concerning computational efticiency.

FORMULATION

Consider a domain ¥ with a uniaxial periodic array of fibers embedded in the matrix,
as illustrated in Fig. 1. The position vector x is described with respect to a rectangular
Cartesian coordinate system £, i = 1-3 with ¥, in the axial direction of the fibers. In the
%,, %y-plane, a typical cell that represents the gcometrical microstructure of the composite
is shown in Fig. 2 for a hexagonal array. For notational convenience forms ( )™, 2= 1,2
denote quantitics associated with material a s herex = | represents fiber and « = 2 represents
matrix. The notation ¥ is the gradient operator with respect to X and () = &( )/ar will be
employed in which f represents time. Furthermore, overbars will designate dimensional
quantities ; the lack of overbars will indicate nondimensional quantities.

The governing relations for the displacement vector @ (=,) and the stress tensor g
{=4,) in each material domain are as {ollows.

Fiber G Cell A

Fig. 1. A fiber-reinforced composite domain ¥ with a uniaxial periodic array of fibers.
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Fig. 2. A typical cell representing the geometric microstructure of the composite.

(a) Equations of motion:
v.&(x) +'f(:) = ﬁh’ﬁ“), &(x) = &h)T in V’(z)‘ (l)

where T (=/1"") is a constant body force, §'” denotes mass density, and ( )7 denotes
transposition of the tensor ( ).
{b) Rate constitutive relations:

6,(:) - C(z)(cp) :é(x)(uh)) iﬂ l/"('x) (2)

é(x}(ﬁm) - %{Q.a(:t_*_(v.“;(x})'f} in Vm‘ (3)

where ¢ (=¢") is the rate of deformation under the small strain assumption, and C°
(= C'g)yis a tangent modulus tensor which becomes a constant tensor C for clastic response.

(¢) Interface continuity relations:
¥ —at? =0, ;{l).(&il)_&{n) =0 on R;‘ 4

where 4, is the interface between fiber and matrix, ¥ (=v") denotes the outward normal
on A, and @ is the zero vector.

(d) Displacement boundary data on ¥, and traction data on dF; where
oV = oV, u 8y is the boundary of V.

(e) Initial conditions at 7 = 0.

In eqns (1)-(4), the Cartesian components of V-a, C:¢, and v'o arc g,,. Cuéy, and
v,0,. respectively. The initial boundary value problem defined by the relations (a)—(c) on
V= (PG 7)Y s well posed.

Most domains of practical interest contain a multitude of fibers; for such domains, a
direct numerical finite element solution becomes intractable even with the use of super-
computers. In an effort to alleviate this problem, a higher-order continuum mixture model
is developed to describe average measures of stress and deformation for both fiber and
matrix, along with certain higher-order microstructural measures, This procedure was
successfully applicd to the elastic response of fiber-reinforced composites with a hexagonal
array of fibers by Murakami and Hegemier (1986). In what follows, the above model is
extended to include inelastic response of the constituents (eqn (2)).

MODEL DEVELOPMENT

Multivariable field representation

The derivation of the model commences with a scaling of both dependent and inde-
pendent variables. To this end, it will be convenient to nondimensionalize the basicequations
by using the following quantitics (Hegemier and Gurtman, 1974):

SAS 29:14/715-p
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A typical macrosignal wavelength

A typical fiber spacing or cell dimension
Cimre P reference wave velocity and macrodensity
Ew = paCim) reference modulus

Lo = A/ Cim, typical macrosignal travel time

e=AA ratio of micro-to-macrodimensions.

With the aid of the above notation. nondimensional variables are introduced according to:

(xou™) = (xX.0a")A. =11,

(C.d)m = (C-&)(”/"Elm:- plx) = p-u) ;-,lm’. (5)

The periodicity of both fiber array structure and material properties define a cell in the
X.. xi-plane as shown in Fig. 2. The ficld variables in the composite exhibit significant
variation over two length scales: the global and cell geometry. Further, an order of mag-
nitude difference in the two length scales suggests the use of a multiscale or multivariable
asymptotic technique (Babuska, 1976 ; Tartar, 1977 ; Bensoussan ef al., 1978 ; Hegemier et
al.. 1979 Sanchez-Palencia, 1980; Murakami er af.. 1981). One introduces the micro-
position vector x*:

X* =X (6)

Field variables are now considered to be functions of both macro- and microposition
vectors

¢ ) = (X ), (M

where xe Voand x* e A™. The cell domain is heterogencous in the x*-space and consists of
A" and A occupiced by the fiber and matrix, respectively ; the macrodomain ¥ in the x-
space becomes homogencous and is shared by the two constituents. Homogeneity of
geometrical and material propertics in the x,-dircction eliminates x} dependence in eqn
(7); heterogeneity is manifested only in the x., x,-plane. Consequently, spatial derivatives
take the new form:

1
Vg = Vgt Vg (8)

where V* is the gradient operator with respect to x* and () . = ¢( )/dxt = 0. In the sequel
G will be written as ¢ for notational simplicity.

The operations (7) and (8), when applied to all field variables nondimensionalized by
eqn (5). lead to the following synthesized field equations.

(a) Equations of motion:
1 .
V'O'“)‘{" ‘V*‘d(”-f-f"’ — p(x)ﬁ(z)‘ o.(x)\' - o_(x) in Vand A(:)' (9)
i

(b) Rate constitutive relations :

1
¢ = Cen {é(u“'H- ~é*(u“’)} in ¥ and A, (10)
&
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where

éu?) = H{va® +(Va®)T} (l1a)
e*(u?) = {{va® + (V*a'?)T} (11b)

(c) Interface continuity relations:
u{:)__u“l =0. V*“"(O'{Z)"’d”))‘—‘g OnA!, (12)

where v*'" is a unit outward normal to A",
(d) Displacement boundary data on ¢V, and traction data on ¢¥'y.
(e) Initial conditions at ¢ = 0.

In eqns (9)-(11) it is understood that ( ) ;. = 0. The synthesized field variables (7) are now
continuous with respect to x in ¥ and may be piecewise continuous with respect to x* in
the cell due to the heterogeneity of the composite.

At this point, the field variables are assumed to satisfy a periodicity condition with
respect to x*. According to this condition field variables take equal values on opposite sides
of the cell boundary. Let the fundamental translation vectors of the periodic array in the
X, x-plane be denoted by ed, and &d,. In the x¥, x¥-plane d, and d, become the funda-
mental translation vectors (see for example, Kittel, 1971). Employing the direct notation
X = (X, X2, X3). X* = (0, x¥, x?) the x*-periodicity condition for a general cell with the
above fundamental translation vectors is expressed as

g{x.x* 1) = g(x. x*+md, +m.d,. 1), (13)
where m; and nt, assume the values + 1 or 0.
The cell domain in the x%, x%-planc consists of subdomains 4'Y and A®. Let the
volume (area) fraction of material 2 be denoted by #'™ ; it satisfies
n =1 (14)
For a hexagonal array the actual cell may be modeled as two concentric cylinders (see

Fig. 2) without significant loss of accuracy in dispersion spectra. For the concentric cylinders
model the cell subdomains, A" and A4'?, are represented as

AV = {(nOI0<r< /", 0<0<2n) (152)
AP = (0 /" <r<l, 0<0<2n), (15b)

where (r, 0) are polar coordinates defined in the x%, x%¥-plane such that
r= \/x3'2+x§‘:. tan 0 = x¥/x¥. (15¢)

For the concentric-cylinders model the cell boundary is denoted by r = 1 and the periodicity
condition (13) simplifies as follows:

g(x,r,0,1) = g{x,r,0+n,t) onr=1. (16)

When Fourier transforms are applied to both the spatial variable x and the time ¢, the
x*-periodicity (13) takes the same form as the Floquet and Bloch theorems for harmonic
wave in periodic structures (Brillouin, 1946 ; Kohn et al., 1972). Although eqn (13) compro-
mises the ability to capture microboundary layer effects on a cell-scale, it provides an
economical means for predicting global boundary layer effects on a scale of down to a few
cell lengths (Murakami, 1991). which is sufficient in most problems of interest.



1924 H. MURAKAMI ef al.

Weighted residual procedure

In this subsection. a weighted residual procedure is introduced. This procedure will be
subsequently used to eliminate x* from all field variables through an averaging operation,
and to establish appropriate equations of motion for the resulting average fields.

To begin. let ™. x = 1. 2. denote the space of all H'-functions (see for example.
Hughes, 1987) g(x. x*: 1) on I with respect to x and on A" with respect to x* that are x*-
periodic according to eqn (13). Functions ¢'" and ¢'* may suffer a discontinuity on the
interface A,. Any vector u'® whose components «!* e'* with u™ = 4" on 1.7, where
u'* is the specified boundary displacement vector, will be called an admissible trial dis-
placement. Any function du'® whose components ou)” e '™ with ou™ = 0 on 17" will be
called a weighting function or an admissible variation of «*'.

Next, consider the weighted residual R. defined by

: 1
J‘ [ Z J (V'G'h)+ . V"“a"'-+-f‘"—p"’ii‘”)'6u“’ dA*
vy Toge g

_ lJ\ v*(t),o_(:).dutn d.v*+ lj [gv*ln (d( M ‘”)'(6u‘”+¢5u‘:’)
o & )1,

&

+ {6 46" ) = T*) + (Su' —ou')] d.\’"‘]dL

+J { Z j ("T® —v g™y - Su™ dA"'} dA =R, (17)
by Ux = b A

where d¥ = dxv, dv, dv,, dda* = dat dyt, CAis the cell boundary, ds* is an infinitesimal
line clement, v** is a unit outward normal to 47, and *T™ denotes the traction vector
acting on an infinitesimal surface clement dA with a unit outward normal v on V. By
virtue of the x*-periodicity the integrations with respect to macrocoordinates x are carried
out over the entire domain 1, while that with respect to the microcoordinates x* is performed
over the cell subdomain A,

If R = 0 is satisficd for all admissible du™ which satisfy (13) and are arbitrary over V,
on ¢V, and on 4™ then it is evident that weak solutions of the local equations of motion
(9) have been generated. These weak solutions then satisfy the traction boundary specified
in (d) on ¢y and the traction continuity (12) on A,.

From (17) with R = 0, Gauss® theorem, and the x*-periodicity condition (13), one
obtains

J [ 22: J‘ {(00“"1" l()c*u)> {0 (1) (Fx) 4x) (x) }
e o FIEl
1
s }, o {3 Lo an
& 1, oy -

where the components of de: g are de,,0,. and
de'™ = HVou'™ +(Vou?)"}, de*™ = H{V*su® +(V*ou™) '} (19)

II

Equation (18) can be envisioned as the principle of virtual work for the synthesized
ficlds. This principle furnishes a useful tool for generating the equations of motion associated
with any order of continuum models.

Asymprotic analysis
In order to gencrate a continuum model from (18). the assumed x*-dependency of the
displacement field must be described explicitly. The necessary microstructural information
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for this operation was obtained for the elastic response of composites with a hexagonal
array of fibers by an asymptotic procedure (Murakami and Hegemier, 1986). This procedure
is based upon the premise that the typical cell length is much smaller than the macro-
dimension. ¢ « I. Therefore, the form of scaled eqns (9)-(12) suggests the expansion of the
dependent variables in the asymptotic series (Lene and Leguillon, 1982):

u' (X, X*, 18) = U (X X, D) +eull (x, x*, ) FetuH(x. xR )+ - (20a)
I

¢V (X.x*. tg) = go{‘l (X, X* D)+ ol (x. x*, ) +ee (x.x*. )+ -~ (20b)

CiNeP) o L) 4 gCPENP) 4 g2 CLeP) (20c)

where ui;). ofs) and C{7) satisfy the x*-periodicity condition. In the sequel. a class of
hardening elastoplastic materials, which admit a rate potential and have a positive definite
tangent modulus tensor, is considered. Consequently, Ci3" is also assumed to be symmetric
and positive definite in the expansion (20c) ; this obviously holds for elastic responses where
only C(i*™ = C™ is required.

If eqn (20) is substituted into eqns (9)-(12) and the coeflicients of different powers of
£ are equated to zero, a sequence of microboundary value problems (MBVPs) defined on
the cell is obtained. The first three sets of MBVPs for the coefficients of £7%, ¢ ', and &°
are defined in what follows.

MBVPs for 0@z %) :

V*a®, =0 inA® Qla)
Gy = CH™ é*(ul) in AW (21b)

(94 {1 .. (h, 2 3] — -
ui —u =0, v*Va? —al" ) =0 ond,. lcd)

From eqns (21a,b) the operator for ulf) may be expressed as
LGu) = V- {COP  é* @)l =0 in 4™ 2)

A solution of the problem is u,,, which is independent of x*:

u:(’,), = (X, 1), e*(uy) =a, =0 (23)
MBVP for O ')
V* ol =0 inA™ (24a)
6oy = Ciiy™ : {e(ugo)) +€*(u})} in A® ’ (24b)
uil—ul) =0, v (g2 -6l =0 onA,. (24c.d)

Equations (24a.b) imply that

L(it) = Vo {CE™ et (ufi))} = —V*- {CM s é(uq,)!) (25)
Equation (25) shows that uf3) is governed by the same operator as that of eqn (22) for uly),
except for the right-hand side. Even if the right-hand side of eqn (25) is nonzero it vanishes
when integrated over the cell. As a result, the integrability condition for u(}) is satisfied. The
form of the forcing term in eqn (25) suggests the following expression for uf}) :

U6 X%, 1) = &, ()™ ™ (x*) (26)

where g™ is x*-periodic. The substitution of (26) into (24) yields an MBVP for each ™ ;
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this is continuous over the cell due to the perfect bond condition (12). These problems are
defined up to a constant vector with respect to x*. This constant term may be included in
u3(x. r). Therefore. it is convenient to choose ¥* such that its integration over the cell

vanishes:

Y J L dA* = 0. (27)
= )
MBVP for O(£"):
V*-g3 = p™u,, - =V-al) inA™ (28a)
o) = CH : {e(ui) +e* R + CH ™ {e(up) +e* ()} in A (28b)
ui—uy =0, v*"-(a{f)~0a;])) =0 on A, (28c.d)

At this potnt. it 1s instructive to outline the O(1) homogenization procedure and
to compare with the proposed O(e) homogenization procedurc. Both homogenization
procedures require the solution of the MBVPs for ul}) defined by eqns (24) and (26). The

O(1) equations of motion are obtained by imposing the integrability condition for u(3) on

eqn (28a) without solving the MBVPs for ul¥) (Bensoussan ¢t al., 1978 ; Sanchez-Palencia,
1980). According to the Fredholm alternative theorem, the problem defined in equs (28)

has a unique solution up to a constant vector with respect to x*, if the operator for ul3) in

cqns (28) satisfics the integrability condition —the range of L(ul3) is orthogonal to its kernel
uff = ug, (X, 1) (see for example, Marsden and Hughes, 1983). The same O(1) equations of
motion can be obtained by substituting the trial displucement ficld (31) in eqn (18) and by
retaining only O(1) terms. As a result, the O(1) model neglects the kinetic energy assoctated
with the O(z) displacement and fails to model harmonic wave dispersion. This deficiency is
improved in the O(e) homogemzation procedure.

Trial displacement and mixture equations of motion

The development of an O(&) homogenization commences with the definition of an
average displacement field for cach constituent, retaining terms up to and including O(z7)
lerms :

| ,
U™ (x.t) = A"’J fug, +eul) +euly)) dar, (29)
‘1

1

where A'® denotes the cell subdomain for integration and the arca for algebraic operations.

Equation (25) shows that u{}) is excited by w,.,, + 4, Therefore, the mixture for-
mulation becomes more tractable by introducing generalized displacement variables (par-
ameters) which represent w,,, + t,0,,. such that

] 1
S, (x,0) =8, =] u?-vds* > uli) - v+ ds*, (30)
! § eA 4, A 4
where 4 = A" + A" denotes the total arca of the cell.
This yields the following trial displacement field
u(x x* 10e) = UR(X, 1) +6S,,(x, )7 (x*). 3N

Ineqn (31) U™ is the average displacement associated with each constituent, while S, (x. 1)
is the generalized displacement which represents the amplitude of the O(e) displacement
microstructure. In the sequel, equation (31) will be used to obtain mixture equations of
motion from eqn (18).
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In order to find the O(e¢) displacement microstructure x™(x*) one must solve six
MBVPs defined by eqns (24) and (26). These problems were solved analytically by Mura-
kami and Hegemier (1986) for a hexagonal cell, consisting of elastic constituents, approxi-
mated by the concentric-cylinders model. The exact solution indicates a good approximation
for the O(e) displacements, and the following trial displacement field (in component form)
was constructed for hexagonal cells:

U@ (x.x* t.8) T UP(x. 1) +¢[S,2(x. 1) cos 0+ S,5(x. 1) sin 0]g'*(r). (32a)
where
() x+1 l 3 [
g =(-1 F(’—t)z:;) (32b)
S: =S, (32¢)

and where J,; is the Kronecker delta. The generalized displacements S,; are not displacement
components but parameters it is convenient to employ the component form in eqns (32).
The functions g'(r) cos § and ¢ (r) sin @ are the approximations for ¥* and satisfy the
x*-pertodicity condition (16) and the normalization condition (27). The effectiveness of the
above trial displacements to simulate harmonic wave dispersion was demonstrated for
hexagonal and square arrays in the above reference. For arbitrary cells and elastic con-
stituents one can numerically solve the MBVPs for y™ by finite element methods and
numerically construct approximate solutions. These approximate solutions are functions of
X* and are independent of material properties; therefore they apply to both isotropic and
orthotropic constituents.

For nonlincar responses 3™ can be found by solving the rate-MBVPs since the tangent
moduli must be cvaluated for cach é(ug,,); this implies that ¥ differs for cach load
increment. To render the following analysis tractable, an approximate solution for ™ which
is independent of the load increment was constructed. By virtue of very weak anisotropy
introduced to the nonzero and off-diagonal entries of the clustic modulus tensor, it is found
that the approximate ™ for clustic response furnishes a good approximation even for
elustoplustic deformation. This situation is similar to the nonlinear plate and shell analyses
in which a lincar variation of the in-plane displacements over the thickness of the plate
and shell—found for elastic responses—yiclds a good upproximation even for nonlincar
response. The soundness of the above approximation will be examined in the sequel by
comparing the model prediction with one obtained via a detailed finite element analysis. In
what follows, the above theory will be applied to a hexagonal cell with the concentric-
cylinders approximation.

Substitution of eqns (32) into eqn (18) yields the mixture equations of motion and
associated boundary conditions together with the inherited initial conditions ; they are given
in component form as follows.

(a) Mixture equations of motion:

ARG+ (= 1) P 4 n R = g pt 1D 33)
2 1 . ..
M+ (0% a4+ Ry) = 1Sz, i=1,2 (34a)
3 l { 2a} (la) '\
Myt (05"~ 03"+ Ry) = IS, i=1,3 (34b)
3 2 | . .
WM+ M)+ (05 =0+ Ryy) = 1Sy, (34c)

where the average operations are defined by
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I
(X 1) = yw:;J o (x. x*, 1) dA* (33)
Y, 4I1I
i l ' (1) 4D * l | tx) b
Px.1) =E?4_ ] g,/'v ds* = q 1 Tan¥y' ds* (36)
SRS B -
(M, M, = 1 )3 o,/ g (cos 8, sin ) d 4* 37
A, il
I I 0 -
Ru= sy (0% cos 2040 sin 200 dA*. i= 1.2 (38a)
£ ‘4(1)
{1 5 Y
R, = R ;5(‘0';7 cos 20+0%' sin 20) d4*. i=1,3 (38b)
b A
] I o T
Rev= iy | 5,204 +047) sin 20 dt* (38¢)
l‘ill
(=% Hop . b=t =~ oy 2 (39)
- 4nt” n'? . )

In ¢cqns (36) -(38) 4 (=n) denotes the arca of the cell.
(b) Boundary conditions:

v or wMely spectfied fori =13 (40)
Sy oor A:I,,v, specified fori = 1,2 (41a)
S, or N]I,,\', specified fori= 1,3 (41b)
Sy or (A‘I,3+N‘I,\)v, specified. (4lc¢)
(¢} Initial conditions :
U U™ 85,.5,.5,.85, specitied at 1 = 0. (42)

Itis noted here that the above mixture equations are identical to those for elastic constituents
(Murakami and Hegemier, 1986).

Incremental constitutive relations and trial transverse stress-rate

At first glance, it would appear that the trial displacements (32) could be used together
with the original three-dimensional material constitutive relations (10) and the stress-type
averages (35) -(38) to establish a set of constitutive equations for the stress averages to
accompuany the equations of motion (33) and (34). A closer examination, however, reveals
that such an approach will not yield a relation for the interaction body force P in (36)
and will lead to a model which is too “stiff”” and which exhibits erroncous dispersive
characteristics. These problems—common to the use of direct variational methods—can be
alleviated by the use of a judicious mixed weighted residual procedure wherein the trial
functions include certain stress-rate components as well as the velocity components. Such
a procedure is an incremental version of Reissner’s mixed vanational principle (Reissner,
1984, 1986) which was employed to derive the mixture model for elastic constituents
(Murakami and Hegemier, 1986).

In order to usc the mixed weighted residual procedure, it is necessary to rewrite the
rate constitutive relations (10) in terms of in-plane strain rates and transverse stress rates;
these are shown in matrix form for easy finite element implementation:
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6, = Eyé +[Ei2]{d} (43a)
&) = —[Ei]"é, +([Exl{d.}), (43b)

where

1
{e(}=[e:: ey 2exy ey 291:]T+E[€$~ e¥y 2e% 2ef, 26’72]T- (44)

In eqns (43) and (44) [ ]" is the transposition of [ ]; subscript t denotes transverse
quantities. The transverse stresses are those which appear in the traction continuity con-
dition (12b). i.e. all stress components except ¢'. The matrices [E,] are functions of the
elements of Cif and [EY] is symmetric and positive definite for hardening materials.
Specific forms of [E;"'] employed for the numerical study are given in the Appendix and
obtained for the von Mises yield criterion and associative flow rule with isotropic strain
hardening.

Let Y (x = 1. 2) denote the space of all H'-functions g(x. x*, f) on V with respect
to x and on 4™ with respect to x* that are x*-periodic according to eqn (13). Functions
¢'" and ¢'¥ may suffer a discontinuity on the interface 4,. Any vector a'” whose components
belong to '™ with 4 = @' on ¢V'®, where 4™ is the specified boundary velocity, will be
called an admissible trial velocity. Any function ' whose components belong to ¢ with
Su™ = 0 on VP will be called a weighting function. The spiace of admissible transverse
stress-rate {417} (x = 1, 2) consists of all H® (=L,) functions §(x, x*, ) on V with respect
to x and on A" with respect to x* that are x*-periodic. The mixed weighted residual
procedure applied to the rate boundary value problem defined by (9)-(12) yields in matrix
form:

J‘ [ Z J: , v{().ti‘l‘))f)l",'l) + {(50::)} T {01:)} + {O'['l(l) } r{p('{"’}
; e

x - |

+{aM ({7} + [ERN R~ [ES){a D} dA*

+ . ﬁ [([oa '} — {8 "} T){T*} + {ST*} T({a?} = {a "]y ds‘] dv

='[ [ y J (0T () dA*] da, (45)
A 2o JA

where {du}, {pa}, {T*}, and {"T} are, respectively, the matrix representation of du, pii,
T*, and 'T.

For arbitrary variation of {#'”} and {6{”}, one obtains the rate constitutive relation
for {é{™} in (43b), as well as the rate equations of motion (9), the rate boundary conditions
(d). and the rate form of eqn (12). Equation (43a) is considered to be the definition of 6.
The mixed weighted residual equation (45) with appropriate trial functions for {4®} (=u')
and {6{”} yields the rate constitutive relations for the stress averages in eqns (35)-(38). The
ratc form of (32a) furnishes a trial velocity field. The trial transverse stress rate has the
form

{60} = {6} (x.x*, ) + &)} (x, x*,0). (46)

In accordance with the O(1) homogenization procedure, the O(1) transverse stress-rate
1Gyn ) can be constructed by using the approximate velocity field defined from eqn (31).
Accordingly, for a hexagonal array, substitution of the trial velocity ficld obtained from
(32) into (10) furnishes the following form for the transverse stress-rate:
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) ‘ 1 .
WGioy = TN, 1)+01:r*:[7‘(9)]{1‘}(.‘<.l). (47a)
where [t'*'} and [¢} are stress variables defined as
TP =1y oy )T (47b)
g = [ty 1y 1]n (47¢)

and where [T(6)] is a 5 x 5 matrix whose nonzero elements are

T” = le = T“ = _T:: = T44 = T55 =C0520
7‘13 = T23 = T}: = T_;_s = - T54 = Sin 29 (47d)

The O(e) term [o}},} is governed by the MBVP (28) which requires the solution of
u(y). The exact analysis of u2) based upon the expansion (20a) and eqns (23) and (26) yields
42 sub-MBVPs. The formidable task of solving for the elements of u?) can be alleviated by
constructing {o};},} approximately from (28a). Examination of the analytical solutions for

a concentric-cylinders cell reveals that {o{7],}. which satisfies
\7* G:ll,) - (__ ])x# | ")/"(1} in Ah). (48)
yields a simple approximation for a general cell.
Equation (48) is obtained by applying the Gauss theorem to eqn (36) and satisfies the

integrability condition for u(3) through the explicit introduction of P. For a hexagonal cell
the following approximation (adnpu.d for clustic constituents) is employed

[deh = g (OO P 0, (492)

where { P} is a matrix representation of P, and {Q(U)] is a 5x 3 matrix whose nonzero
clements are

il

105, = cos 0
sy = 304, = sin 0. (49b)

Q=0 = !

Q= Q= X\

The trial transverse stress-rate is now obtained by substituting eqns (47) and (49) into eqn
(46).

On substituting the rate form of eqn (32) and eqn (46) into eqn (45), onc obtains the

rate form of {33), (34). (40) and (41). In addition, the arbitrary variation of {6} yields
the rate constitutive relations for the transverse stress variables:

:‘“I

n

o _
= n" n:(’cﬁ{’,‘} +(=1) -{S}) +J [EM]) e da* (50)
Al

l . N 1 . £, .
J . ;S[ﬂr[E‘:':’] (if"’}-+ ;:[71{1‘}4- i.f/“’[Q]{P}>d‘4*
/4&.)

. 1 BT 3
= n[W]{S} +J - [TTER] e da* (5D
,4’:)
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2 1 & .
2T | gmerEs ({f“’} +6,: 3 [T1{i} + 39"’[Q]{P}) da
2= FILY
=2({U"?} - ““>+n—<{R'1{s A+ RS 2+ [RMI(S} )

+ = ZJ. (x)[QlT E(z)lTem dA*. (52)

z =1
where {U'"'} is a matrix representation of U™, A = A"+ #?, and
e = U U UR+US UR+UR UR+UR)T
8} =1[8:2 S 285 Su Sul" (53)

In eqns (50)-(52). [W] is a 5 x S matrix, and [R'], [R"]. [R"] are 3 x 5 matrices. Nonzero
elements of the latter matrices are

l l
WH-—-PVP—IVH—-—-E;;—”—, ;V2‘=W:2=“‘;’V44=W55=;'(-r)’
Rli=Ri=Rl=RU=2 RL=RN=3 Rh=Rh=Rll=”Y=1 (%

The solution of (50). (51) and (52) yiclds {¢}, {£}, and {P} in terms of {¢(2,}. {S}, ¥,
and (U —{U"), For inclastic response the integrals in (50)-(52) must be evaluated
numcricaiiy at cach increment (time step) : for clastic constituents the above relations can
be evaluated explicitly and this produces-the results obtained from a fully elastic approach
to the problem (Murakami and Hegemicer, 1986). Substituting cqn (46) into eqns (37) and
(38) once finds

2 2 3 k
My = 3hPsJ8, M,y = Moy = hPojd, My = 30PyJ4,

3 3 2 3
A’u:M“:;IP‘/Z, A}fzg=léfz3=hp3f4, M“=M|2=0 (55)
Ry = 11:/n'", Ryy = (12224 133)/n'", Ry = —ty/n'",
Ryy = 153/2n'", Ryy = (— 1322+ 135)/n'". (56)

The remaining constitutive equations for 61" and M, are obtained from eqns (43a), (35)
and (37). The results are

it = [ {Eneneiena (e von S+ Sovinn oar on
;‘f!l

. 2 1 . <
nisi = 5 [ omon | enen iz () +on ki + Sovian) e
AT J

1w |
(58a)
where
(M)} = (M, M,)", [n)=[cos8 sin0]". (58b)

The above operations were carried out at each integration point in a constitutive subroutine
for the mixture finite element code: HFEC2D (Impelluso, 1990).
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Table 1. Material propertics for wave-retlect problem

Volume Young's Poisson’s Yield Hardening
Maternal fraction Density modulus ratio stress parameter
1 n't Pl gech E™ (dynem ™) v ay (dynem 7Y H' (dynem©-)
! 0.272 1.8 292.0 (107 0.3776 — —
2 0.728 1.29 82.24 (10™) 0.357 1.33 (10%) 11.38 (10"

MODEL VALIDATION STUDIES

[n this section. validation studies are conducted in an effort to ascertain the simufation
capability of the O(¢) mixture continuum model. The model consists of the equations of
motion (33) and (34). the boundary conditions (40) and (41). the initial conditions (42).
and the rate-constitutive relations (50)-(52) and (55)-(58). The problems examined include
lincar and nonlinear wave propagation. In the dynamic response, mixture model predictions
were compared with experimental data or “"exact” numerical data generated from DYNA2D
based upon detailed explicit modeling of fibers and matrix. Material properties of the
investigated composite which consists of elastic fibers and an elastoplastic matrix are shown
in Table 1.

For clastic harmonic wave propagation, the model was validated by comparing the
predicted phase velocity spectra with experimental data (Murakami and Hegemier, 1986).
Thercfore, the validation of the model was conducted in the time domain. As was noted
previously, the validation strategy is to compare mixture model predictions with cxper-
imental data or “exact”™ numerical data generated from DYNA2D based upon detailed
cxplicit modeling of tibers and matrix. For this purpose, an explicit finite element code:
HFEC2D (Impelluso, 1990) was developed using four-node quadrilateral clements for the
generalized plane strain in the x,, xi-plane. The mixture clement has six nodal degrees-of-
freedom for U and S (i =1.2). The clement carries the microstructure of the cell at
cuch integration point where the numerical integrution of incremental constitutive equations
(50) (58) are conducted. For simplicity of notation in the numerical results, dimensional
quantitics are referred without overbars.

The geometry of the wave-reflect problem is shown in Fig. 3 with meshes for HFEC2D
(Fig. 3b) and the detailed DYNA2D (Fig. 3¢). A composite half space with free boundary
at x, = 0 was loaded uniformly with respect to v, under a plane strain condition in the v, -
direction. For this globally one-dimensional wave phenomenon in the x,-direction, a column
of cells of width A = 0.0975 ¢m, shown in Fig. 3a, is discretized by the mesh shown in Fig,
3¢ for DYNA2D caleulation ; for the mixture model only one row of elements shown in
Fig. 3b is employed. The following boundary conditions were posed for the DYNA2D

O

LoA

R |

————— 17347

Fig. 3. Geometry of the wave-reflect problem: (a) overview: (b) HFECID mesh with djmcnﬁons
in the x,. x, planc. and with microstructure in the x%. x% plance: (¢) DYNA2D mesh with dimensions.
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£ 3
,5 -1.0 E 1o
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- 2
= 20 ; Se 20
— DYNAZD { : —— DYNA2D
— HFEC2D - | — HFEC2D
'3.0 - 3.0 i e i L L
00 3.0 60 9.0 120150 180 0.0 3.0 60 9.0 120150 18.0
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Fig. 4. Time variation of particle velocity for the elastic wave-reflect analysis: (a) fiber. Uy,
{b) matrix, 'Y,

calculation:

G’::=0‘;;{{1(f)“’f{(f“!{))}. 0'33=0 at .\';=0

ll_]:'—-'(f:_\=0 atx}=0.A. (59)

For the mixture model, the corresponding boundary data were specified as

0":13‘) = ﬂ“’ﬂn{’l([)"';l(t""ln)".‘ ﬂ‘ln:ﬂ = A;[u = A:Izz = 0 at XNy = 0

Uy = ol = 1&{” = 1*:1,3 =0 atx; =0.4, (60)

where H(1) denotes the Heaviside step function, and 1, = 3 us is the pulse duration,

A load of 6y = 1 x 10° dyn cm "~ is applied to induce a purely elastic response in both
constituents, while a load of @, = 3x 10* dyn cm~? is applicd to induce an elastoplastic
response in the matrix. The numerical results are shown for observation points located in
the 33rd cell. The time variations of fiber particle velocity, at r = 0, U4 and of matrix
particle velocity U at r = | and 0 = 0" are shown, respectively in Fig. 4a and b. The
corresponding time variations for the elustoplastic case are shown in Fig. S5a and b. Arrival
time, peak response and damping are well correlated by the mixture elements. The dispersive
behavior is evident and well matched ; furthermore, the spreading of the wave pulse to a
duration larger than 3 us is demonstrated in both DYNA2D and HFEC2D.

0.0 — A 0.0 . OM
m . < 3 g
3 [ ‘
S 20} [ -2.0
"o "o
.40} €. 4.0
: | — DYNA2D — DYNA2D
| — HFEC2D — HFEC2D
60l 60}
1 1 [ 1 L L L. 1 I N
0.0 3.0 6.0 9.0 120 150 8.0 0.0 30 60 90 120150 18.0
Time (jtsec) Time {}sec)

Fig. 5. Time variation of particle velocity for the elastoplastic wave-reflect analysis: (a) fiber. U4";
(b} matrix, U$".
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Fig. 6. Effective plastic strain contour obtained from DYNA2D.

Spectal attention is paid now to the focalized plastic deformation in the composite.
Figure 6 shows the effective plastic strain contour obtained from DYNA2D ; plastic defor-
mation is localized near 0 =0° and 180°. To examinc the capability of the model in
predicting those localized effects, the effective stresses at § = 150" and 180" both at r = 0.761
are shown, respectively, in Fig. 7a and b. From those figures, the localization is modcled
accurately by the mixture element. This accuracy is also reflected in the predictions of the
effective plastic strain.

In order to further assess the accuracy of the model, the waveguide problem itlustrated
in Fig. 8 is considered. The load is applied at the boundary x, = 0 in the fiber axis direction.
Hexagonal symmetry, approximated by axisymmetry, allows for an extraction of a cell of
radius A = 0.0975 cm. First, a comparison is made with a shock tube test conducted by the

2.0 2.0
Ng L5F — DYNA2D NE LS| — DYNA2D
~— HFEC2D -— HFEC2D B
s S -
& 1.0 > Lot {
o«g 02 N X
. 0.5 = s :
v b“ ™
° [\
0.0 b
1 L 1 3 L

5 - 0.5
0.0 3.0 6.0 9.0 12.0 150 18.0 0.0 3.0 6.0 9.0 12.0 150 18.0
Time (}sec) Time (Hsec)

Fig. 7. Time variation of cffective stress in the matrix domain for the clastoplastic wave-reflect
analysis: (a) 0 = 150 ; r =0.761: (b) 8 =180 . r = 0.761.
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(a) X,

(v}

\// ';7

___.’ “-_
0160

Fig. 8. Geometry of the wave-guide problem: (a) overview ; (b) HFEC2D mesh with dimensions in
the x,. x. plane, and with microstructure in the x?. x? planc; (¢) DYNA2D mesh with dimensions.

Acerospace Corporation and reported by Hegemier ez af. (1973). The composite is subjected
to a step pressure loading of 4.826 x 10° Pa. The results of the model are obtained by using
100 elements. The comparison of the rear surface velocitics on a specimen 6.33 mm thick
is shown in Fig. 9. In the above experiment the nonlincar effect was negligible.

Numerical experiments were conducted to test the model's capability for predicting
clastoplastic wave propagation. The following boundary conditions with respect to the
cylindrical coordinate system were posed for the DYNA2D calculation: x; and x, are,
respectively the axial and radial coordinafes:

oy =0, (H{)-H(t—1y)}, 6,,=0 atx, =0

uy =0, =0 atx,=0A. (61)

For the mixture model, the corresponding boundary data were specified as

o = nVay (HU) = H(t—1,)}, of =M, =M, =0 atx, =0

2

UP =% = My =M =0 atx,=0,05IA. (62)

1.2

1
08
06

04 r

Nonmalized Rear Velocity

02F

0.0 1 A 1 A 1 A 'l A L A
00 05 1.0 15 20 25 30 35

Time (usec)

Fig. 9. Time variation of normalized rear velocity.
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Fig. 10 Time variation of particle velocity for the elastoplastic waveguide analysis : (4) fiber, (A
(b) matrix, '},

A pulse load ¢, = 5.0x 10° dyn cm ™~ of duration t, = 3 us was applicd. Axial velocities
at x; = 43.54A were plotted in Fig. 10a for fiber and in Fig. 10b for matrix,

The above comparisons with the detailed FE analyses indicate the cost efficiency of
the mixture element due to the coarseness of the mesh ; the mixture code, HFEC2D, runs
at least an order of magnitude faster than the detailed finite element computation.

CONCLUDING REMARKS

The construction of a higher-order mixture description of fiber-reinforced composites
has been demonstrated for the case of material nonlinearitics. For simplicity of presentation,
composites with a hexagonal array of tibers and elastoplastic matrix were considered. The
methodology is based upon an asymptotic homogenization method and yields the equations
of motion, the appropriate initial and boundary conditions, and a set of consistent rate-
constitutive relations. For transient response a finite clement wave code was developed for
the mixture model to solve lincar and nonlincar problems; results using this code were
compared with those from DYNA2D in which a fine mesh was utilized to explicitly model
the microstructure of the composite. These comparisons reveal that the mixture model is
capabie of furnishing an accurate and economical description of complex wave phenomena.
In the foregoing analyses the importance of wave dispersion and attenuation effects was
confirmed for nonlinear as well as linear composite responscs.
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APPENDIX. DEFINITIONS OF [£,] IN EQUATION (43)

It is computationally advantageous to rewrite eqn (10) in terms of the elastoplastic compliance matrix
D = C ' For a von Mises yicld criterion and associated flow rule with lincar strain hardening, D" may be
cxpressed as

9
DllePI = l)(t} + 4&(“:["(" slx)s(wll" (A ”

In eyn (Al i is the strain hardening parameter, s (=a —1tr a.8) is the deviatoric stress, and & (= \"‘35:5?3) is
the von Muses effective stress.
Rewriting the rate compliance relation by using a 6 x 6 matrix [D] for D, onc finds

1 l

Eio [En: - '~-~~~~-[D . D n D D luuem [Eu)l = e D, nll e L
-1l [ i (3] 1 e IS 18 . 1) =1 bl B « hf=2 6.
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